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Weibull master curves and fracture
toughness testing
Part | Master curves for quasi-static uniaxial tensile and

bend tests

M. LAMBRIGGER
Centre de recherches en physique des plasmas, Technologie de la Fusion, EPFL,
Im Struppen 12, CH-8048 Ziirich, Switzerland

Three types of specimen-size-independent Weibull master curves, characterizing strength
and failure of macroscopically homogeneous, brittle materials have been derived. These
Weibull master curves are significant if an uniaxial tensile stress is applied to the
investigated specimens, as, for example, in the case of quasi-static uniaxial tensile tests or,
under some restrictions, in the case of quasi-static three- or four-point bend tests. In
addition, the existence of three types of apparent fracture toughness master curves, which
can be applied to any material undergoing brittle cleavage fracture such as ceramics,
intermetallics, or structural steels at low homologous temperatures, has been established.
Furthermore, the same is also valid for the specimen-size-independent Weibull master
curves. The apparent fracture toughness master curves can be obtained, by performing
fracture toughness tests, or simply by applying a mathematical transformation to the
corresponding Weibull master curves, which have been evaluated from quasi-static
uniaxial tensile or bend tests. © 7999 Kluwer Academic Publishers

List of Symbols I exp, m), Kexp(y, m) andMexple(z), m]:
c Constant Three different types of experimental Weibull master
o Applied failure stress curves
P(c) Three-parameter, cumulative Weibull failure
probability distribution function N(a), T(b) andL[d(2)]:
00 Normalizing factor in dimensions of stress  Three different types of master curves for brittle
o Threshold stress, below which no failure cleavage fracture toughness testing, i.e., three different
occurs types of theoretical, apparent fracture toughness master
Oin Failure stress at the inflexion poiR{(c) curves
o Mean failure stress
m Weibull modulus Nexp@), Texp®) andLexp[d(2)]:
z Distinct value of the cumulative failure Three different types of experimental, apparent fracture
probability distribution function toughness master curves
07 Failure stress corresponding to the
cumulative failure probabilitg X, y ande(2):
K| Failure stress intensity Different types of scaled failure stresses
P(K;) Cumulative failure probability distribution
function in terms oK a, b andd(2):

Kmin  Threshold stress intensity, below which no  Different types of scaled failure stress intensities

failure occurs
Kiin Failure stress intensity at the inflexion point X, Yer, €r(2), cr, ber anddgr(2):
of P(K) Values of the cross-over points formed by the corre-
K, Mean failure stress intensity sponding experimental and theoretical master curves
Kz Failure stress intensity corresponding to the

cumulative failure probabilitg

1. Introduction

I (x, m), K(y, m) andM[e(z), m]: In an earlier paper, Lambrigger [1] derived specimen-
Three different types of Weibull master curves size-independent Weibull master curvdgx, m),
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existing for Weibull modulim> 1, and alternative Because the complete Gamma-functijh+(1/m)]is
Weibull master curveK(y, m), existing for every realand positive for evemy > 0, it is easily understood
real m>0. I(x,m) and K(y, m) represent scaled from Equation 5 that is also real and positive in all
cumulative failure probability distribution functions; these cases. Trying to achieve the alternative variable
the former typel (x, m) was obtained by scaling the transformation
three-parameter cumulative Weibull failure probabil-

ity distribution functionP (o), with the stress-value of y=—=
the corresponding inflexion point,, the latter type 0 =0

Kl(y» m) by scaling P(c) with the mean stress = the alternative Weibull master curvés(y, m) can be
Jo odP. According to Weibull [2, 3],P(0) is always  obtained for everyn > 0 by isolatingse — o, in Equa-
significant if an uniaxial tensile stress is applied totion 7, replacings"with the help of Equation 5, and

materials undergoing brittle cleavage fracture, as, foby substituting the resulting expression for o, in
example, in quasi-static uniaxial tensile tests. SuctEquation 1:

brittle materials might be ceramics, semiconductors, in-
termetallics, or even structural steels in the brittle low-

m
temperature range. The following transformations haveP(¢) = K(y,m) = 1 — exp{ — [F (1 + 1)] ym}
been proved to be valid [1, 4]: m

o — 0y

()

8

m
_ o —0 . Weibull master curved (x, m) are also applicable to
P(o) =1—exp) — ; (1 d .
©) p{ ( o) ) } o>o (1) formal cases, where the Weibull moduluds smaller
1 than zero, becausg, is, following Equation 4, alsoreal
Plo)=I(x,m=1— exp[ﬂ Xm} (2)  and positive fom < 0. Lambrigger [5] has shown that
m modified Weibull master curves representing scaled,

X — 0 — 07 3) cumulative critical crack size distribution functions, can
" Oin — 0y exhibit negativen-values. _The master curvé&sy, m),
m— 17Ym however, are less useful in the formal cases, winere
Oin = o’o|: } + o, (4) is n.eg.at.ive. Furthermor&[1 + (1/m)] is qegativg for
m an infinite number of extended ranges in the interval

—1 < m < 0, whereby it remains always positive for
wherebyo denotes the applied failure stre§¥s) the M < —1. The master curvel(x, m) andK (y, m) are
three-parameter cumulative Weibull failure probability displayed in Figs 1 and 2.
distribution functiong, the threshold stress underneath  If m>1, I(x, m) can be calculated fronK (y, m)
P(o) is equal to zerago a normalizing factor that has bY settingx =y = ¢ = constant and vice versa:
dimensions of stressn the Weibull modulusx the
scaled stress, anl,, the stress-value of the inflexion
point of P(c). The alternative scaling parametefor Ic,m)=1- exp{
the master curvels (y, m) can be calculated as follows:

(m—1)In[1 — K(c, m)]
m(r(L+ 2)" } ®

L L Equation 9, displayed in Fig. 3, expresses the possibility
&= / odP = o, + / (o —o,)dP of comparing two corresponding Weibull master curves
0 E ! I (x, m) andK (y, m) at any positive, fixed value of the
o N variablesx resp.y. This is achieved, formally, by set-
=0, + m/ exp{— |:( ’) ]} ting x = y = ¢ = constant. Inspection of Equation 9
0 00 provides the following resultsk(c, my) = K(c, mp)
(U _ Gf)md for my ~ 3.31, I (¢, m) > K(c, m) for Weibull moduli
X o

m > m,, andl (¢, m) < K(c, m) for 1 <m < m,.
00

—orton [ [(" ;O"f)m}
ool (72 o (]

= 0; +ool’ <1+ %) )

1/m

whereby the complete Gamma-functibflL + (1/m)]
is defined by

1 o0
r (1 + =) = / ul/mexp(—u) du (6) Figure 1 Weibull master curveb(x, m) as functions of the scaled failure
m 0 stressx and the Weibull modulum.
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to macroscopically homogeneous, brittle materials.
Therefore, the same is also true for the one-parameter
master curvesg(x, m) and K(y, m). Moreover, Lam-
brigger [4] has also shown that experimental Weibull
master curved expx, m) and Kexp(y, m) of mate-
rials undergoing an amount of stable crack growth
prior to failure, such as 8 wt% yttria partially stabi-
lized zirconia/20 vol %B-alumina composites (8 wt %
Y-PSZ/20 vol % B-alumina composites), enable the
characterization of the toughening mechanisms operat-
ing in the investigated materials. It has been found that
experimental Weibull master curvégxpx, m = 7)
andKexp(y, m = 7) can be constructed f@a 8 wt %
Y-PSZ/20 vol % g-alumina composite by calculating
the Weibull modulusn from the uppew -range of ex-

Figure 2 Alternative Weibull master curvei$(y, m) as functions of the  perimental cumulative failure stress probability distri-
scaled failure stresgand the Weibull modulusn. butions P(Ui )

2. Apparent fracture toughness

master curves
It has already been recognized by Weibull [2, 3] that the
critical eventfor brittle cleavage fracture is the propaga-
tion of a microcrack starting from a critical defect, and
that this event can be described by a statistical weakest
link model. A material-, specimen-size-, and testing-
temperature-dependent cumulative failure probability
distribution function, which is most appropriate to dis-
play brittle failure data of fracture toughness testing,
has been discussed extensively by Wallin [6—8]. It deals
with a Weibull type equation which, in terms of the ap-
Figure 3 Weibull master curves(c, m) as functions of the alternative  plied stress intensiti(, , is given by
Weibull master curve& (c, m) and the Weibull modulum.

P(Ki) = 1—expi—c[K| — Kmin]"}  (16)

S 0SS
DS SRRSO TS
OIS SSOR SRS
STSOPTITTSINSS

The means of the transformed variabbesandy  wherebyP(K,) defines the cumulative failure probabi-
(x andy), as well as the values of the inflexion points lity distribution function of the investigated speci-
of I (x, m) andK (y, m) (X, resp.yin), are given by men, Kmin the stress intensity underneath the cumu-

lative failure probability is zero, and represents
1 (14 i) a material-, specimen-size-, and testing-temperature-
_:/ xdl = ——"= (10)  dependent constant. Wallin [6, 7] has shown that Equa-
0 tion 16 can be applied to every type of brittle mate-
rial under all circumstances. Therefore, parameter-free
V= ydK = (11) master curved(a) and T (b) can be calculated\ (a)
is received by scaling®(K,), with the stress inten-
sity value of its inflexion poinK,;,. The following

Xin = 1 (12) reparametrization is thus possible:
—1\1/m — ;
Vin = ﬂ _1 (13) a— S~ Kmin (17)
In = F(l—l— %) X Kiin — Kmin .
_ _1_ - 4
Furthermore, the following equalities hold: P(K\)=N(@=1 exp[( 4>a } (18)

(&.m) = K(7.m) = P, m) The master curve for brittle cleavage fracture tough-
’ - T ’ ness testingN(a) is formally equal tol (x, m=4).
1\\™ Thus, N(a) is material-, specimen-size-, and testing-
=1-—expl— (F (1 + —>) (14) temperature-independent. By setting—=a=c=
m constant, the following equation has been shown to be

valid [9]:
I (Xin, M) = K(Yin, M) = P(oin, M)
_3 Cm \&/m
=1- exp(l_—m) (15) N(©) =1-exp (T) (l — m)
m
Weibull [2, 3] has shown that is a specimen-size- x {=In[1 — I (c, m]}*/™ (19)

independent magnitude, if an uniaxial stress is applied
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Figure 4 The master curve for brittle cleavage fracture toughness testingrigure 5 Alternative master curve for brittle cleavage fracture tough-

N(c) as a function of the Weibull master curvigg, m) and the Weibull
modulusm.

ness testing (c) as a function of the alternative Weibull master curves
K (c, m) and the Weibull modulusn.

Equation 19, displayed in Fig. 4, enables the calculatiod he complete Gamma-functidi[1 + (1/4)] is given
of single valuesd, N(a)) from transformed, exper- as follows:

imental failure data pointsx(, I (xj, m)) of uniaxial

tensile tests. The uniaxial tensile tests provide the fail-

ure data points, P(oi)), oi being the strength (failure
stress) of the speciméanand P(o;) representing the
corresponding experimental cumulative failure proba-

bility distribution. The experimental, apparent fracture

toughness master curvdexp@) is then received by
fitting a curve to the data points( N(g)). Further-
more, the experimental,
failure data points X, | (xj, m)), the single values
(ai, N(&)) and Nexp@) can also be derived from

experimental, cumulative failure stress distributionsMoreover, by settingy = b =

specimen-size-independent

1 oo
r<1+ 21) = / u/4exp(-u)du~ 0.906 (22)
0

The theoretical, alternative apparent fracture toughness
master curvd (b) is then defined by

P(Ki)=T(b) = K(y=b.m=4)

e o)

Cc = constant resp.

P(oi) of quasi-static three- or four-point bend testsa = b = ¢ = constant, the following equations can be

according to Weibull [2, 3], if the threshold stress
is equal to zero. Thud\exp@) is determined without
having performed proper fracture toughness tests.

The theoretical, alternative apparent fracture tough

ness master curve(b), is achieved by eliminating the
two Weibull parameters and Kni,, as WeII as scal-
ing with the mean-stress intensity, = f K, dP.

The alternative master curve for brittle cleavage frac-

ture toughness testingyb), is then formally equivalent
to K(y, m = 4). However, in this case the variabjés
defined by the equation

_ (K — Kmin)

B (KI - Kmin) =b

(20)
whereby
K, =f KidP = Knin+ | (K| — Kmin)dP
0 0

= Kmin+/ dcexp{—[c(K| — Kmin)4]}
0
x (Ki — Kmin)* dK|
1 o0
= Kmin + W/o [c(K) — Kmin)4]1/4 exp

x {—[c(Ki — Kmin)*T} d[c(K} — Kpmin)*]

r(i+3

- Kmln + c 1/4

(21)
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derived:

a--enf ({2 2)f
I

(24)

T()=1—-ex

7))
Equation 25, displayed in Fig. 5, expresses the possibi-
lity of comparing two corresponding apparent fracture
toughness master curviga) andT (b) at any positive,
fixed value of the variables resp.b. This is done, for-
mally, by settinga = b = ¢ = constant. Further, the
following is valid: N(c) > T(c) for 0 < ¢ < co. On

the other side, Equation 24 enables the calculation of
single valueslg, T (b;)) from transformed, experimen-
tal failure data pointsy(, K(yi, m)) of uniaxial tensile
tests. Again, the experimental, apparent fracture tough-
ness master curvEexp®) can be obtained by fitting a
curve to the data pointd;( T(b;)).

3
———In[1—-N 25
p{4(r(1+1 4Inl (c)]} (25)

3. Evaluation of the Weibull parameters

In order to calculate Weibull master curves, which
are independent af, andog and only a function of
the shape factom, usually three failure data points



i,i+1andi +2 have to be pointed out. The cumu- By combining Equations 1 and 36; can be obtained
lative Weibull probability distribution function at the through
pointi, is then given by

o7 = oo[—In(1 = 2)]Y™ + o, (31)
o — O m
i T .
Ploi)=1- exp{—[ o } } i > 0r (26) |f the variable transformation
o — o,
However, ifo, has already been evaluated osjf~ 0, &2) = P (32)

atypical Weibull plot consisting of only two failure data

points provides the Weibull modulus graphically. a5 peen accomplished, the Weibull master curves
The Weibull plots are accomplished by plotting log 1og p[g(z), m] can be obtained by isolating— o, in Equa-
[1/{1—P(oi)}] as an ordinate and logi(—o) asitsab-  on 32, replacingr, with the help of Equation 31, and

scissa as has been suggested by Weibull [2]. The slop@y substituting the resulting expression for- o, in
of the straight line obtained by a linear regression a”alEquation 1:

ysis of the uppeb-range represents then the Weibull

modulusm [9], as can be seen from Equation (27). P() = M[e(2), m] = 1 — expiin(L — 2)[e@)]™}
=1—(1— 2" (33)

] = mlog[o; — o;] — mlogog

(27) In the case of = 0.5, for instance, the Weibull master

curvesM[e(z), m] are given by
Later, the other parameters can be calculated or checked

1
IOg |Og |:1—7P(0'|)

as follows: M[e(z — 05)’ m] —1— (0‘5)[e(z=0.5)]m (34)
%0 = Equation 34 is displayed in Fig. 6. Experimental
(0141 — o1) Weibull master curve exple(z), m] are obtained, by

{{=In[1 — P(oi+)]}¥m — {~In[1 — P(o7)]}¥/m} fitting a curve to the transformed failure data points
(e(2), M[&(2), m]). M[e(2), m] and e (2) can be cal-
culated from the original failure data points of uniaxia

(28) lated from the original failure d ints of uniaxial

tensile or bend testsi(, P(o;)), by using Equations 26,

32, and 33.

The master curves for brittle cleavage fracture tough-

ness testing, which have already been described in a

However, if o, is unknown,. a difference quotient more restricted way [9, 10], are again formally spe-
method developed by Lambrigger [9] and based on a5 cases ofv [e(2), m], that is M[e(z), m = 4]. If

analysis of atleast three data points has to be applied, ifye transformed failure data points of uniaxial tensile
order to evaluetm. Nevertheless, it has been observedOr bend tests obey specimen-size-independent Weibull
that for metenals pndergomg an amount of stable crack,sster curves [e(2), m], the results of fracture tough-
growth prior to failure, normally no clear threshaid  egs tests of such brittle materials are given by the mas-

exists. It can be assumed that for such materials N@ur cryes for brittle cleavage fracture toughness testing
significant lower boundr, can be evaluated, simply M[e(2), m = 4]. In this case, however, the variale(g)

because any applied stress promotes at least a chang€enoted byi(2) and defined by the equation
of the microstructure with regard to the initial defects

or = 0i — oo{—In[1 — P(a))}¥™  (29)

by activation of any toughness mechanism. However, (Ky — Kpmin)
as will be shown in the following sections, this effect dz) = mn (35)
is efficiently taken into account by defining deviation (Kiz — Kmin)

parameters for the experimental master curves. Thus,
there is no need for the introduction of a threshold stress
under these circumstances. 3 el

4. Th | f el s _
. ST 0.75
Specifngr?—r:ie;:—i;cl‘é‘egeondr::ts\j\?e‘i t():: IT‘r,::ster curves of ¢ ::‘::t:““‘“il\“\‘\‘\\“\\““““““““\‘\m|‘|\“\||““ 05 Mle(z=0.8)m]

i

: . . gl
general type, which are obtained by scalf@y) with “\\\\E\:\\“ 0.2
\

any stresses; corresponding to a fixed, cumulative
failure probabilityz, can formally be constructed for
every ream. Therefore, the scaling parametghas to

be evaluated firstin these cases. The following equation

is a primary conclusion of the definition: Figure 6 General type of Weibull master curvéd[e(z = 0.5), m],
being scaled with the stress value corresponding to a cumulative failure

probabilityz = 0.5, as a function of the scaled stre$s = 0.5) and the
P(oz) =2 (30)  weibull modulusm.

\
A\
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wherebyK, denotes the applied stress intensKy;in ~ Furthermore, the following equalities hold:
the stress intensity underneath the cumulative failure
probability P(K,) is zero, anK ; the stress intensity
value corresponding to the cumulative failure probabi-
lity z= P(K|2).

From now on, the master curves for brittle cleav-
age fracture toughness testiffe(z) = d(z), m = 4]
will be denoted byL[d(Z)]. By settinge(z) = d(2) =
¢ = constant, the following transformation equation is
obtained:

M[en(2), m] = | (Xin, m) = K(Yyin, M)

- 1—[(1— Z){Mn—&m}}

)

1-m

=1- exp(— (412)
M[e&(z), m] = I (x, m) = K(y, m)
=1-(1- Z)[g(z)]m

=1—expln(1 - 2[&2]™

s ()]

Moreover, we find for the specimen-size-independent
Weibull master curve& (y, m) by settingy = &(z) =
X = € = constant:

(43)

L[c] = 1—exp{[-In(L—2)]"F

x [—In(1— M[c, m])]¥/™} (36)

Again, Equation 36 enables the calculation of single
values ¢l (2), L[d; (2)], from transformed experimental
failure data points€{(z), M[g(z), m]) of quasi-static
uniaxial tensile or bend testsexp[d(z)] is finally ob-
tained by fitting a curve taX (2), L[d; (2)]). In addition,
the following main result can be obtained by compar-
ing the Weibull master curvdgx, m) to M[e(z), m] for

m > 1orm< 0 (for0<m < 1, P(o) exhibits no inflex-
ion point for real stresses) by setting= e(z) = ¢ =
constant:

[—In(1— 2)]In[1 — K(c, m)]
[r@+m]"

M[c,m] =1-— exp{

Equation 43 can always be used for>0 or m<
—1 because the values &fi[c, m] and K(c, m) are
significant and lie between zero and one for both
master curves in both cases. Inspection of Equa-
tion (43) provides the following results fefz) = 0.5:
K(y, my)=M[e(z) =0.5 my] for my~ 3.44, K(y,
m) < M[e(z2) =0.5,m] for m>m, and K(y, m)>
M[e(z) = 0.5, m] for 0 < m < mj.

The means of the transformed variabi€z), as well

m
(1-m)

M[c, m] = 1—exp{ In(1—2)

x In[1—1(c, m)]} (37)

Inspection of equation (37) provides fefz) = 0.5:
I (x,m) = M[e(2) = 0.5, my] for my ~ 3.26, I (X,

m) > M[e(z) = 0.5, m] form > my andl(x, M) < 35 thed(z)-values of the inflexion points of the master
M[e(z) = 0.5, mlforl < m < m. curvesL[d(2)], denoted byd(z) resp.din(2), charac-

The means representing the first moments of the varigajze the master curves[d(2)] thoroughly. They are
ablese(z), denoted bye(z), as well as the inflexion 5iculated as follows:

points ofM[e(z), m], denoted by, (2), are thoroughly
characterizing the Weibull master curviqe(z), m].
They are calculated in the following way:

92Mlen(2), ml

e@r (38)
m-—1 1/m
“O-{mha |

wherebye(2) is real and positive fom > 1 orm < 0.
The mean®(z) exist for everym > 0 orm < —1 and
are given by

1
&2) = /O &(2) dM[e(2). m]

m{in(1 - 2)] /0 c><>[6(2)]m(1 — 2)[{@1" d[e(2)]
T+

= Ca—arm
672

(40)

PL[de(@)]
DR 49
3 1/4
0@ = | =) )

_ 1
d2) = /0 d(2) dL[d(2)]

4lin(1 - 2)] /0 oo[0|(2)14(1 — 2)l@" d[d(2)]

r(1+1%)

= Cin@ =277 (46)

Furthermore, the following equalities hold:
Lidn(@)] = 1| = gl |

=1- exp(— Z) ~ 0.528 47



Llc] =1- exp{—gln(l— 2)In[1 — N(c)]} (49)

[—In(1 - 2)]In[1 — T(©)]
[ra+H1

Llc]=1- exp{ } (50)

Equations 49 and 50 are displayed in Figs 7 and 8.

5. Discussion and conclusions
The theoretical and experimental apparent fracture
toughness master curvés$d(z)] and Lexp[d(2)] rep-
resent cumulative failure probability distribution func-
tions, interms of a scaled, dimensionless stress intensity
d(2). Inthe case of pure, brittle cleavage fracture, Equa-
tion 36 merely represents a mathematical link between
Figure 7 The general type of master curve for brittle cleavage fracturethe \Neibull theory and the Wallin theory. However, if it
toughness tes_ting[c] as afur)ction of the cumulative failure probability is applied tothe case of materials undergoing an amount
z, corresponding to the scaling stress-vatieand the master curve for . . 2
brittle cleavage fracture toughness testhi). of stable crack growth prior to failure, it is very useful
because it supplys characteristic deviation magnitudes
as will be shown in detail in part 2 of this series of
papers. Equation 36 enables a mathematical elimination
of the influence of the initial defect-size distribution.
Therefore, the combined effects on the cumulative fail-
ure probability distribution, created by the stress-fields
ahead of the large cracks, in interaction with the active
mechanisms controlling stable growth and nucleation

D 1 of (micro-)cracks, are revealed.
o 00-75L[c] The presented quasi-static Weibull-Wallin theory for
2 .S

0.25
04

0.6

0.6

0.8 04 T(©)
c
0.2

1

master curves will be extended to dynamic loading con-
ditions as obtained by performing Charpy impact tests
in part 3 of this series of papers. Therefore, instru-
mented Charpy impact tests have been performed with
ferritic/martensitic steels. The testing-temperature has
been selected close to the ductile-to-brittle transition

0 temperature (DBTT) in order to get relevant data with
respect to crack-tip shielding, stable crack growth, and

Figure 8 The general type of master curve for brittle cleavage fracture . . . ’ .
g 9 i 9 capacity of microcracking prior to final rupture.

toughness testing[c] as a function of the cumulative failure probability
z, corresponding to the scaling stress-vatyeand the alternative master
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COND O AW

Finally, by settingd(z) = a = b = ¢ = constant, the
following relations between the master curids(2)],
N(a), andT (b) are found:
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