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Weibull master curves and fracture

toughness testing

Part I Master curves for quasi-static uniaxial tensile and
bend tests

M. LAMBRIGGER
Centre de recherches en physique des plasmas, Technologie de Ia Fusion, EPFL,
Im Struppen 12, CH-8048 Zürich, Switzerland

Three types of specimen-size-independent Weibull master curves, characterizing strength
and failure of macroscopically homogeneous, brittle materials have been derived. These
Weibull master curves are significant if an uniaxial tensile stress is applied to the
investigated specimens, as, for example, in the case of quasi-static uniaxial tensile tests or,
under some restrictions, in the case of quasi-static three- or four-point bend tests. In
addition, the existence of three types of apparent fracture toughness master curves, which
can be applied to any material undergoing brittle cleavage fracture such as ceramics,
intermetallics, or structural steels at low homologous temperatures, has been established.
Furthermore, the same is also valid for the specimen-size-independent Weibull master
curves. The apparent fracture toughness master curves can be obtained, by performing
fracture toughness tests, or simply by applying a mathematical transformation to the
corresponding Weibull master curves, which have been evaluated from quasi-static
uniaxial tensile or bend tests. C© 1999 Kluwer Academic Publishers

List of Symbols
c Constant
σ Applied failure stress
P(σ ) Three-parameter, cumulative Weibull failure

probability distribution function
σ0 Normalizing factor in dimensions of stress
στ Threshold stress, below which no failure

occurs
σin Failure stress at the inflexion pointP(σ )
σ̄ Mean failure stress
m Weibull modulus
z Distinct value of the cumulative failure

probability distribution function
σz Failure stress corresponding to the

cumulative failure probabilityz
K I Failure stress intensity
P(KI ) Cumulative failure probability distribution

function in terms ofKI

Kmin Threshold stress intensity, below which no
failure occurs

KIin Failure stress intensity at the inflexion point
of P(KI )

K̄ I Mean failure stress intensity
KI z Failure stress intensity corresponding to the

cumulative failure probabilityz

I (x, m), K (y, m) andM [e(z), m]:
Three different types of Weibull master curves

I exp(x, m), Kexp(y, m) andMexp[e(z), m]:
Three different types of experimental Weibull master
curves

N(a), T(b) andL[d(z)]:
Three different types of master curves for brittle
cleavage fracture toughness testing, i.e., three different
types of theoretical, apparent fracture toughness master
curves

Nexp(a), Texp(b) andLexp[d(z)]:
Three different types of experimental, apparent fracture
toughness master curves

x, y ande(z):
Different types of scaled failure stresses

a, b andd(z):
Different types of scaled failure stress intensities

xcr, ycr, ecr(z), acr, bcr anddcr(z):
Values of the cross-over points formed by the corre-
sponding experimental and theoretical master curves

1. Introduction
In an earlier paper, Lambrigger [1] derived specimen-
size-independent Weibull master curvesI (x, m),
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existing for Weibull modulim> 1, and alternative
Weibull master curvesK (y, m), existing for every
real m> 0. I (x, m) and K (y, m) represent scaled
cumulative failure probability distribution functions;
the former typeI (x, m) was obtained by scaling the
three-parameter cumulative Weibull failure probabil-
ity distribution functionP(σ ), with the stress-value of
the corresponding inflexion pointσin, the latter type
K (y, m) by scaling P(σ ) with the mean stress ¯σ =∫ 1

0 σdP. According to Weibull [2, 3],P(σ ) is always
significant if an uniaxial tensile stress is applied to
materials undergoing brittle cleavage fracture, as, for
example, in quasi-static uniaxial tensile tests. Such
brittle materials might be ceramics, semiconductors, in-
termetallics, or even structural steels in the brittle low-
temperature range. The following transformations have
been proved to be valid [1, 4]:

P(σ ) = 1 − exp

{
−

(
σ − στ

σ0

)m
}

; σ > στ (1)

P(σ ) = I (x, m) = 1 − exp

[
(1 − m)

m
xm

]
(2)

x = σ − στ

σin − στ

(3)

σin = σ0

[
m − 1

m

]1/m

+ στ (4)

wherebyσ denotes the applied failure stress,P(σ ) the
three-parameter cumulative Weibull failure probability
distribution function,στ the threshold stress underneath
P(σ ) is equal to zero,σ0 a normalizing factor that has
dimensions of stress,m the Weibull modulus,x the
scaled stress, andσin the stress-value of the inflexion
point of P(σ ). The alternative scaling parameter ¯σ for
the master curvesK (y, m) can be calculated as follows:

σ̄ =
∫ 1

0
σdP = στ +

∫ 1

0
(σ − στ ) dP

= στ + m
∫ ∞

0
exp

{
−

[(
σ − στ

σ0

)m
]}

×
(

σ − στ

σ0

)m

dσ

= στ + σ0

∫ ∞

0

[(
σ − στ

σ0

)m
]1/m

× exp

{
−

[(
σ − στ

σ0

)m
]}

d

[(
σ − στ

σ0

)m
]

= στ + σ00

(
1 + 1

m

)
(5)

whereby the complete Gamma-function0[1 + (1/m)]
is defined by

0

(
1 + 1

m

)
=

∫ ∞

0
u1/mexp(−u) du (6)

Because the complete Gamma-function0[1+(1/m)] is
real and positive for everym> 0, it is easily understood
from Equation 5 that ¯σ is also real and positive in all
these cases. Trying to achieve the alternative variable
transformation

y = σ − στ

σ̄ − στ

(7)

the alternative Weibull master curvesK (y, m) can be
obtained for everym > 0 by isolatingσ − στ in Equa-
tion 7, replacing ¯σ with the help of Equation 5, and
by substituting the resulting expression forσ − στ in
Equation 1:

P(σ ) = K (y, m) = 1 − exp

{
−

[
0

(
1 + 1

m

)]m

ym

}
(8)

Weibull master curvesI (x, m) are also applicable to
formal cases, where the Weibull modulusm is smaller
than zero, becauseσin is, following Equation 4, also real
and positive form < 0. Lambrigger [5] has shown that
modified Weibull master curves representing scaled,
cumulative critical crack size distribution functions, can
exhibit negativem-values. The master curvesK (y, m),
however, are less useful in the formal cases, wherem
is negative. Furthermore,0[1 + (1/m)] is negative for
an infinite number of extended ranges in the interval
−1 < m < 0, whereby it remains always positive for
m < −1. The master curvesI (x, m) andK (y, m) are
displayed in Figs 1 and 2.

If m> 1, I (x, m) can be calculated fromK (y, m)
by settingx = y = c = constant and vice versa:

I (c, m) = 1 − exp

{
(m − 1) ln[1 − K (c, m)]

m
(
0

(
1 + 1

m

))m

}
(9)

Equation 9, displayed in Fig. 3, expresses the possibility
of comparing two corresponding Weibull master curves
I (x, m) andK (y, m) at any positive, fixed value of the
variablesx resp.y. This is achieved, formally, by set-
ting x = y = c = constant. Inspection of Equation 9
provides the following results:I (c, mo) = K (c, mo)
for mo ≈ 3.31, I (c, m) > K (c, m) for Weibull moduli
m> mo, andI (c, m) < K (c, m) for 1< m< mo.

Figure 1 Weibull master curvesI (x, m) as functions of the scaled failure
stressx and the Weibull modulusm.
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Figure 2 Alternative Weibull master curvesK (y, m) as functions of the
scaled failure stressy and the Weibull modulusm.

Figure 3 Weibull master curvesI (c, m) as functions of the alternative
Weibull master curvesK (c, m) and the Weibull modulusm.

The means of the transformed variablesx and y
(x̄ and ȳ), as well as the values of the inflexion points
of I (x, m) andK (y, m) (xin resp.yin), are given by

x̄ =
∫ 1

0
xdI = 0

(
1 + 1

m

)(
m−1

m

)1/m (10)

ȳ =
∫ 1

0
y dK = 1 (11)

xin = 1 (12)

yin =
(

m−1
m

)1/m

0
(
1 + 1

m

) = 1

x̄
(13)

Furthermore, the following equalities hold:

I (x̄, m) = K (ȳ, m) = P(σ̄ , m)

= 1 − exp

{
−

[(
0

(
1 + 1

m

))m
]}

(14)

I (xin, m) = K (yin, m) = P(σin, m)

= 1 − exp

(
1 − m

m

)
(15)

Weibull [2, 3] has shown thatm is a specimen-size-
independent magnitude, if an uniaxial stress is applied

to macroscopically homogeneous, brittle materials.
Therefore, the same is also true for the one-parameter
master curvesI (x, m) and K(y, m). Moreover, Lam-
brigger [4] has also shown that experimental Weibull
master curvesI exp(x, m) and Kexp(y, m) of mate-
rials undergoing an amount of stable crack growth
prior to failure, such as 8 wt % yttria partially stabi-
lized zirconia/20 vol %β-alumina composites (8 wt %
Y-PSZ/20 vol % β-alumina composites), enable the
characterization of the toughening mechanisms operat-
ing in the investigated materials. It has been found that
experimental Weibull master curvesI exp(x, m = 7)
andKexp(y, m = 7) can be constructed for a 8 wt %
Y-PSZ/20 vol %β-alumina composite by calculating
the Weibull modulusm from the upperσ -range of ex-
perimental cumulative failure stress probability distri-
butionsP(σi ).

2. Apparent fracture toughness
master curves

It has already been recognized by Weibull [2, 3] that the
critical event for brittle cleavage fracture is the propaga-
tion of a microcrack starting from a critical defect, and
that this event can be described by a statistical weakest
link model. A material-, specimen-size-, and testing-
temperature-dependent cumulative failure probability
distribution function, which is most appropriate to dis-
play brittle failure data of fracture toughness testing,
has been discussed extensively by Wallin [6–8]. It deals
with a Weibull type equation which, in terms of the ap-
plied stress intensityKI , is given by

P(KI ) = 1 − exp{−c[KI − Kmin]4} (16)

wherebyP(KI ) defines the cumulative failure probabi-
lity distribution function of the investigated speci-
men, Kmin the stress intensity underneath the cumu-
lative failure probability is zero, andc represents
a material-, specimen-size-, and testing-temperature-
dependent constant. Wallin [6, 7] has shown that Equa-
tion 16 can be applied to every type of brittle mate-
rial under all circumstances. Therefore, parameter-free
master curvesN(a) andT(b) can be calculated.N(a)
is received by scalingP(KI ), with the stress inten-
sity value of its inflexion pointKIin . The following
reparametrization is thus possible:

a = KI − Kmin

KIin − Kmin
(17)

P(KI ) = N(a) = 1 − exp

[(
−3

4

)
a4

]
(18)

The master curve for brittle cleavage fracture tough-
ness testingN(a) is formally equal to I (x, m= 4).
Thus, N(a) is material-, specimen-size-, and testing-
temperature-independent. By settingx = a = c=
constant, the following equation has been shown to be
valid [9]:

N(c) = 1 − exp

{(−3

4

)( −m

1 − m

)4/m

× {−ln[1 − I (c, m)]}4/m

}
(19)
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Figure 4 The master curve for brittle cleavage fracture toughness testing
N(c) as a function of the Weibull master curvesI (c, m) and the Weibull
modulusm.

Equation 19, displayed in Fig. 4, enables the calculation
of single values (ai , N(ai )) from transformed, exper-
imental failure data points (xi , I (xi , m)) of uniaxial
tensile tests. The uniaxial tensile tests provide the fail-
ure data points (σi , P(σi )),σi being the strength (failure
stress) of the specimeni and P(σi ) representing the
corresponding experimental cumulative failure proba-
bility distribution. The experimental, apparent fracture
toughness master curveNexp(a) is then received by
fitting a curve to the data points (ai , N(ai )). Further-
more, the experimental, specimen-size-independent
failure data points (xi , I (xi , m)), the single values
(ai , N(ai )) and Nexp(a) can also be derived from
experimental, cumulative failure stress distributions
P(σi ) of quasi-static three- or four-point bend tests
according to Weibull [2, 3], if the threshold stressστ

is equal to zero. Thus,Nexp(a) is determined without
having performed proper fracture toughness tests.

The theoretical, alternative apparent fracture tough-
ness master curveT(b), is achieved by eliminating the
two Weibull parametersc and Kmin, as well as scal-
ing with the mean-stress intensitȳK I = ∫ 1

0 KI dP.
The alternative master curve for brittle cleavage frac-
ture toughness testingT(b), is then formally equivalent
to K (y, m = 4). However, in this case the variabley is
defined by the equation

y = (KI − Kmin)

(K̄ I − Kmin)
= b (20)

whereby

K̄ I =
∫ 1

0
KI dP = Kmin +

∫ 1

0
(KI − Kmin) dP

= Kmin +
∫ ∞

0
4cexp{−[c(KI − Kmin)4]}

× (KI − Kmin)4 dKI

= Kmin + 1

c1/4

∫ ∞

0
[c(KI − Kmin)4]1/4 exp

× {−[c(KI − Kmin)4]} d[c(KI − Kmin)4]

= Kmin + 0
(
1 + 1

4

)
c1/4

(21)

Figure 5 Alternative master curve for brittle cleavage fracture tough-
ness testingT(c) as a function of the alternative Weibull master curves
K (c, m) and the Weibull modulusm.

The complete Gamma-function0[1 + (1/4)] is given
as follows:

0

(
1 + 1

4

)
=

∫ ∞

0
u1/4 exp(−u) du ≈ 0.906 (22)

The theoretical, alternative apparent fracture toughness
master curveT(b) is then defined by

P(KI ) = T(b) = K (y = b, m = 4)

= 1 − exp

{
−

[
0

(
1 + 1

4

)]4

b4

}
(23)

Moreover, by settingy = b = c = constant resp.
a = b = c = constant, the following equations can be
derived:

T(c) = 1 − exp

{
−

(
0

(
1 + 1

4

))4

×
{

−
[
0

(
1 + 1

m

)]−m

ln[1 − K (c, m)]

}4/m}
(24)

T(c) = 1 − exp

{
3

4
(
0

(
1 + 1

4

))4 ln[1 − N(c)]

}
(25)

Equation 25, displayed in Fig. 5, expresses the possibi-
lity of comparing two corresponding apparent fracture
toughness master curvesN(a) andT(b) at any positive,
fixed value of the variablesa resp.b. This is done, for-
mally, by settinga = b = c = constant. Further, the
following is valid: N(c) > T(c) for 0 < c < ∞. On
the other side, Equation 24 enables the calculation of
single values (bi , T(bi )) from transformed, experimen-
tal failure data points (yi , K (yi , m)) of uniaxial tensile
tests. Again, the experimental, apparent fracture tough-
ness master curveTexp(b) can be obtained by fitting a
curve to the data points (bi , T(bi )).

3. Evaluation of the Weibull parameters
In order to calculate Weibull master curves, which
are independent ofστ andσ0 and only a function of
the shape factorm, usually three failure data points
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i , i + 1 andi + 2 have to be pointed out. The cumu-
lative Weibull probability distribution function at the
point i , is then given by

P(σi ) = 1 − exp

{
−

[
σi − στ

σ0

]m
}

; σi > στ (26)

However, ifστ has already been evaluated or ifστ ≈ 0,
a typical Weibull plot consisting of only two failure data
points provides the Weibull modulusm graphically.
The Weibull plots are accomplished by plotting log log
[1/{1−P(σi )}] as an ordinate and log (σi −στ ) as its ab-
scissa as has been suggested by Weibull [2]. The slope
of the straight line obtained by a linear regression anal-
ysis of the upperσ -range represents then the Weibull
modulusm [9], as can be seen from Equation (27).

log log

[
1

1 − P(σi )

]
= m log[σi − στ ] − m logσ0

(27)

Later, the other parameters can be calculated or checked
as follows:

σ0 =
(σi +1 − σi ){{−ln[1 − P(σi +1)]}1/m − {−ln[1 − P(σi )]}1/m

}
(28)

στ = σi − σ0{−ln[1 − P(σi )]}1/m (29)

However, if στ is unknown, a difference quotient
method developed by Lambrigger [9] and based on an
analysis of at least three data points has to be applied, in
order to evaluatem. Nevertheless, it has been observed
that for materials undergoing an amount of stable crack
growth prior to failure, normally no clear thresholdστ

exists. It can be assumed that for such materials no
significant lower boundστ can be evaluated, simply
because any applied stress promotes at least a change
of the microstructure with regard to the initial defects
by activation of any toughness mechanism. However,
as will be shown in the following sections, this effect
is efficiently taken into account by defining deviation
parameters for the experimental master curves. Thus,
there is no need for the introduction of a threshold stress
under these circumstances.

4. The general type of master curves
Specimen-size-independent Weibull master curves of a
general type, which are obtained by scalingP(σ ) with
any stressesσz corresponding to a fixed, cumulative
failure probabilityz, can formally be constructed for
every realm. Therefore, the scaling parameterσz has to
be evaluated first in these cases. The following equation
is a primary conclusion of the definition:

P(σz) = z (30)

By combining Equations 1 and 30,σz can be obtained
through

σz = σ0[−ln(1 − z)]1/m + στ (31)

If the variable transformation

e(z) = σ − στ

σz − στ

(32)

has been accomplished, the Weibull master curves
M [e(z), m] can be obtained by isolatingσ −στ in Equa-
tion 32, replacingσz with the help of Equation 31, and
by substituting the resulting expression forσ − στ in
Equation 1:

P(σ ) = M [e(z), m] = 1 − exp{ln(1 − z)[e(z)]m}
= 1 − (1 − z)[e(z)]m

(33)

In the case ofz = 0.5, for instance, the Weibull master
curvesM [e(z), m] are given by

M [e(z = 0.5), m] = 1 − (0.5)[e(z=0.5)]m (34)

Equation 34 is displayed in Fig. 6. Experimental
Weibull master curvesMexp[e(z), m] are obtained, by
fitting a curve to the transformed failure data points
(ei (z), M [ei (z), m]). M [ei (z), m] andei (z) can be cal-
culated from the original failure data points of uniaxial
tensile or bend tests (σi , P(σi )), by using Equations 26,
32, and 33.

The master curves for brittle cleavage fracture tough-
ness testing, which have already been described in a
more restricted way [9, 10], are again formally spe-
cial cases ofM [e(z), m], that is M [e(z), m = 4]. If
the transformed failure data points of uniaxial tensile
or bend tests obey specimen-size-independent Weibull
master curvesM [e(z), m], the results of fracture tough-
ness tests of such brittle materials are given by the mas-
ter curves for brittle cleavage fracture toughness testing
M [e(z), m = 4]. In this case, however, the variablee(z)
is denoted byd(z) and defined by the equation

d(z) = (KI − Kmin)

(KI z − Kmin)
(35)

Figure 6 General type of Weibull master curvesM [e(z = 0.5), m],
being scaled with the stress value corresponding to a cumulative failure
probabilityz = 0.5, as a function of the scaled stresse(z = 0.5) and the
Weibull modulusm.
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wherebyKI denotes the applied stress intensity,Kmin
the stress intensity underneath the cumulative failure
probability P(KI ) is zero, andKI z the stress intensity
value corresponding to the cumulative failure probabi-
lity z = P(KI z).

From now on, the master curves for brittle cleav-
age fracture toughness testingM [e(z) = d(z), m = 4]
will be denoted byL[d(z)]. By settinge(z) = d(z) =
c = constant, the following transformation equation is
obtained:

L[c] = 1− exp
{
[−ln(1− z)]

(m−4)
m

× [−ln(1− M [c, m])] 4/m}
(36)

Again, Equation 36 enables the calculation of single
values (di (z), L[di (z)], from transformed experimental
failure data points (ei (z), M [ei (z), m]) of quasi-static
uniaxial tensile or bend tests.Lexp[d(z)] is finally ob-
tained by fitting a curve to (di (z), L[di (z)]). In addition,
the following main result can be obtained by compar-
ing the Weibull master curvesI (x, m) to M [e(z), m] for
m> 1 orm< 0 (for 0< m< 1, P(σ ) exhibits no inflex-
ion point for real stresses) by settingx = e(z) = c =
constant:

M [c, m] = 1− exp

{
m

(1− m)
ln(1− z)

× ln[1 − I (c, m)]

}
(37)

Inspection of equation (37) provides fore(z) = 0.5:
I (x, m1) = M [e(z) = 0.5, m1] for m1 ≈ 3.26, I (x,
m) > M [e(z) = 0.5, m] for m > m1 and I (x, m) <

M [e(z) = 0.5, m] for 1 < m < m1.
The means representing the first moments of the vari-

ablese(z), denoted byē(z), as well as the inflexion
points ofM [e(z), m], denoted byein(z), are thoroughly
characterizing the Weibull master curvesM [e(z), m].
They are calculated in the following way:

∂2M [ein(z), m]

∂[e(z)]2
= 0 (38)

ein(z) =
{

m − 1

m[−ln(1 − z)]

}1/m

(39)

wherebyein(z) is real and positive form > 1 orm < 0.
The means̄e(z) exist for everym > 0 or m < −1 and
are given by

ē(z) =
∫ 1

0
e(z) d M[e(z), m]

= −m[ln(1 − z)]
∫ ∞

0
[e(z)]m(1 − z)[e(z)]m

d[e(z)]

= 0
(
1 + 1

m

)
[−ln(1 − z)]1/m

(40)

Furthermore, the following equalities hold:

M [ein(z), m] = I (xin, m) = K (yin, m)

= 1−
[
(1 − z)

{
m−1

m[− ln(1−z)]

}]
= 1 − exp

(
1 − m

m

)
(41)

M [ē(z), m] = I (x̄, m) = K (ȳ, m)

= 1 − (1 − z)[ē(z)]m

= 1 − exp{ln(1 − z)[ē(z)]m}

= 1− exp

{
−

[(
0

(
1 + 1

m

))m
]}

(42)

Moreover, we find for the specimen-size-independent
Weibull master curvesK (y, m) by settingy = e(z) =
x = c = constant:

M [c, m] = 1 − exp

{
[−ln(1 − z)] ln[1 − K (c, m)][

0
(
1 + 1

m

)]m

}
(43)

Equation 43 can always be used form> 0 or m<

−1 because the values ofM [c, m] and K (c, m) are
significant and lie between zero and one for both
master curves in both cases. Inspection of Equa-
tion (43) provides the following results fore(z) = 0.5:
K (y, m2) = M [e(z) = 0.5, m2] for m2 ≈ 3.44, K (y,
m) < M [e(z) = 0.5, m] for m> m2 and K (y, m) >

M [e(z) = 0.5, m] for 0 < m< m2.
The means of the transformed variablesd(z), as well

as thed(z)-values of the inflexion points of the master
curvesL[d(z)], denoted byd̄(z) resp.din(z), charac-
terize the master curvesL[d(z)] thoroughly. They are
calculated as follows:

∂2L[din(z)]

∂[d(z)]2
= 0 (44)

din(z) =
[

3

4[−ln(1 − z)]

]1/4

(45)

d̄(z) =
∫ 1

0
d(z) dL[d(z)]

= −4[ln(1 − z)]
∫ ∞

0
[d(z)]4(1 − z)[d(z)]4

d[d(z)]

= 0
(
1 + 1

4

)
[−ln(1 − z)]1/4

(46)

Furthermore, the following equalities hold:

L[din(z)] = 1−
[
(1 − z)

{
3

4[−ln(1−z)]

}]
= 1 − exp

(
−3

4

)
≈ 0.528 (47)
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Figure 7 The general type of master curve for brittle cleavage fracture
toughness testingL[c] as a function of the cumulative failure probability
z, corresponding to the scaling stress-valueσz, and the master curve for
brittle cleavage fracture toughness testingN(c).

Figure 8 The general type of master curve for brittle cleavage fracture
toughness testingL[c] as a function of the cumulative failure probability
z, corresponding to the scaling stress-valueσz, and the alternative master
curve for brittle cleavage fracture toughness testingT(c).

L[d̄(z)] = 1 − (1 − z){−4 ln(1−z)
∫ ∞

0 [d(z)]4(1−z)[d(z)]4 d[d(z)]}4

= 1 − exp

{
−

[(
0

(
1 + 1

4

))4
]}

≈ 0.491

(48)

Finally, by settingd(z) = a = b = c = constant, the
following relations between the master curvesL[d(z)],
N(a), andT(b) are found:

L[c] = 1 − exp

{
−4

3
ln(1 − z) ln[1 − N(c)]

}
(49)

L[c] = 1 − exp

{
[−ln(1 − z)] ln[1 − T(c)][

0
(
1 + 1

4

)]4

}
(50)

Equations 49 and 50 are displayed in Figs 7 and 8.

5. Discussion and conclusions
The theoretical and experimental apparent fracture
toughness master curvesL[d(z)] and Lexp[d(z)] rep-
resent cumulative failure probability distribution func-
tions, in terms of a scaled, dimensionless stress intensity
d(z). In the case of pure, brittle cleavage fracture, Equa-
tion 36 merely represents a mathematical link between
the Weibull theory and the Wallin theory. However, if it
is applied to the case of materials undergoing an amount
of stable crack growth prior to failure, it is very useful
because it supplys characteristic deviation magnitudes
as will be shown in detail in part 2 of this series of
papers. Equation 36 enables a mathematical elimination
of the influence of the initial defect-size distribution.
Therefore, the combined effects on the cumulative fail-
ure probability distribution, created by the stress-fields
ahead of the large cracks, in interaction with the active
mechanisms controlling stable growth and nucleation
of (micro-)cracks, are revealed.

The presented quasi-static Weibull-Wallin theory for
master curves will be extended to dynamic loading con-
ditions as obtained by performing Charpy impact tests
in part 3 of this series of papers. Therefore, instru-
mented Charpy impact tests have been performed with
ferritic/martensitic steels. The testing-temperature has
been selected close to the ductile-to-brittle transition
temperature (DBTT) in order to get relevant data with
respect to crack-tip shielding, stable crack growth, and
capacity of microcracking prior to final rupture.
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